Supporting Information for

On the Stereochemistry of the Dihydropyrone Diels-Alder Reaction

Punit P. Seth and Nancy I. Totah*

Department of Chemistry, University of Iowa, Iowa City, IA 52242

General Methods:

All air sensitive reactions were performed in base washed, flame dried glassware under an atmosphere of argon. Reaction solvents were dried over CaH₂ (benzene, dichloromethane) or sodium/benzophenone ketyl (toluene, tetrahydrofuran) and were distilled just prior to use. Analytical thin layer chromatography was performed on EM silica gel 60F glass plates (0.25mm). Flash column chromatography was performed using EM silica gel 60 (230-400 mesh). ¹H NMR spectra were recorded on Bruker AC-300 or WM-360 spectrometers. Chemical shifts are reported in ppm, downfield from tetramethylsilane using residual CHCl₃ as the internal standard (δ 7.27 ppm). ¹³C NMR spectra were recorded on a Bruker WM-360 (90 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm, downfield from tetramethylsilane using residual CHCl₃ as the internal standard (δ 77.0 ppm). IR spectra were obtained with a Mattson Cygnus 25 instrument. Elemental Analyses were performed by Atlantic Microlab, Inc.; Norcross, GA.

Experimental Procedures:

General Procedure for Diels-Alder Reactions:

<u>Thermal Conditions</u>: A solution of diene (0.6 mmol) and dihydropyrone (0.2 mmol) in toluene (1 mL) was warmed to reflux and stirred for 24 h. After this time, the reaction mixture was cooled to room temperature and concentrated, and the residue purified by flash chromatography (SiO₂; 3-7% EtOAc (gradient) in hexanes containing 1% Et₃N) to provide a mixture of endo and exo diastereomers.

<u>Lewis Acid Catalyzed Conditions</u>: To a solution of the dihydropyrone (0.2 mmol) and diene (0.8 mmol) in THF (1.5mL) was added $ZnCl_2$ (0.2mL of a 1M solution in THF), and the resulting mixture stirred at the temperature indicated in Table 1. After 2 h, the reaction mixture was diluted with ether, washed with saturated NaHCO₃ and brine, dried over MgSO₄, filtered, and concentrated. The crude residue was purified by flash chromatography (SiO₂; 3-7% EtOAc (gradient) in hexanes containing 1% Et₃N) to provide a mixture of endo and exo diastereomers.

Cycloadduct 10a: <u>endo</u> ¹H NMR (CDCl₃, 360 MHz): δ 5.17 (1H, dt, J = 5.2, 1.4), 4.74 (1H, m), 4.49 (1H, dd, J = 5.1, 1.0), 4.16 (2H, m), 3.24 (3H, s), 2.71 (1H, d, J = 16.2), 2.39 (1H, d, J = 16.2), 2.29 (2H, m), 1.31 (3H, s), 1.30 (3H, s), 1.23 (3H, t, J = 7.2), 0.88 (9H, s), 0.14 (3H, s), 0.09 (3H, s). ¹³C NMR (CDCl₃): δ 205.5, 168.7, 150.7, 100.6, 76.0, 73.5, 68.2, 62.1, 61.5, 57.2, 51.3, 33.5, 30.6, 26.2, 25.4 (3C), 17.9, 14.0, -4.2, -4.8. <u>exo</u> ¹H NMR (CDCl₃, 360 MHz): δ 5.08 (1H, d, J = 1.8), 4.68 (1H, d, J = 6.0), 4.64 (1H, d, J = 2.0), 4.23 (2H, q, J = 7.1), 3.38 (3H, s), 2.67 (1H, d, J = 14.3), 2.56 (1H, m), 2.39 (1H, d, J = 14.3), 2.16 (1H, d, J = 18.4, 1.3), 1.38 (3H, s), 1.30 (3H, s), 1.28 (3H, t, J = 7.1), 0.90 (9H, s), 0.16 (3H, s), 0.13 (3H, s). ¹³C NMR (CDCl₃): δ 204.2, 167.9, 148.7, 103.2, 77.0, 75.8, 70.9, 66.6, 61.1, 58.1, 49.7, 34.6, 30.9, 25.6 (3C), 25.0, 17.9, 14.1, -4.3, -4.8. Anal. Calcd for C₂₁H₃₆O₆Si (mixture): C, 61.13%; H, 8.79%. Found: C, 61.25%; H, 8.73%.

Cycloadduct 10b: <u>endo</u> ¹H NMR (CDCl₃, 360 MHz): δ 5.15 (1H, m), 4.43 (1H, d, J = 6.1), 4.20 (1H, d, J = 4.9), 3.28 (3H, s), 2.82 (1H, d, J = 15.9), 2.69 (1H, m), 2.48 (1H, d, J = 15.9), 2.41 (1H, d, J = 18.7), 1.34 (3H, s), 1.30 (3H, s), 0.94 (9H, s), 0.21 (3H, s), 0.19 (3H, s). ¹³C NMR (CDCl₃): δ 199.9, 152.0, 116.9, 98.7, 77.1, 74.4, 68.2, 57.2, 52.1, 51.6, 33.4, 30.6, 25.5 (3C), 25.2, 17.9, -4.3, -4. 7. <u>exo</u> ¹H NMR (CDCl₃, 360 MHz): δ 5.04 (1H, d, J = 1.1), 4.59 (1H, d, J = 1.2), 4.33 (1H, d, J = 5.1), 3.39 (3H, s), 2.78 (1H, d, J = 14.4), 2.74 (1H, m), 2.47 (1H, d, J = 14.4), 2.26 (1H, dd, J = 18.8, 1.3), 1.42 (3H, s), 1.27 (3H, s), 0.94 (9H, s), 0.22 (3H, s), 0.21 (3H, s). ¹³C NMR (CDCl₃): δ 199.3, 149.4, 115.0, 100.9, 76.7, 76.6, 71.1, 58.8, 57.3, 49.0, 33.7, 30.9, 25.5 (3C), 23.9, 17.9, -4.3, -4.8. Anal. Calcd for C₁₉H₃₁NO₄Si (mixture): C, 62.43%; H, 8.55%; N, 3.83%. Found: C, 62.52%; H, 8.64%; N, 3.84%.

Cycloadduct 10c: ¹H NMR (CDCl₃, 360 MHz): (mixture of diastereomers) <u>endo</u> δ 7.85 (2H, m), 7.70 (1H, m), 7.58 (2H, m), 5.10 (1H, d, J = 7.4), 5.05 (1H, dt, J = 5.6, 1.4), 4.03 (1H, d, J = 5.6), 3.06 (3H, s), 2.97 (1H, dd, J = 18.6, 7.1), 2.79 (1H, d, J = 5.6)

15.6), 2.46 (1H, d, J = 15.6), 2.39 (1H, d, J = 18.6), 1.32 (3H, s), 1.22 (3H, s), 0.95 (9H, s), 0.25 (3H, s), 0.24 (3H, s). ¹³C NMR (CDCl₃): δ 201.6, 154.1, 136.6, 134.3, 130.8 (2C), 128.7 (2C), 97.4, 75.9, 75.5, 73.8, 66.3, 57.4, 51.2, 35.2, 29.7, 27.1, 25.5 (3C), 17.9, -4.2, -4.4. Anal. Calcd for C₂₄H₃₆O₆SSi: C, 59.97%; H, 7.55%. Found: C, 60.08%; H, 7.58%.

Cycloadduct 10d: ¹H NMR (CDCl₃, 360 MHz): (mixture of diastereomers) <u>endo</u> δ 5.18 (1H, dd, J = 4.1, 1.1), 4.84 (1H, m), 4.49 (1H, d, J = 5.5), 3.27 (3H, s), 2.66 (1H, d, J = 15.7), 2.44 (1H, d, J = 15.7), 2.31 (2H, m), 2.24 (3H, s), 1.33 (3H, s), 1.30 (3H, s), 0.89 (9H, s), 0.15 (3H, s), 0.11 (3H, s). <u>exo</u> δ 5.02 (1H, d, J = 1.5), 4.73 (1H, d, J = 1.9), 4.62 (1H, d, J = 6.1), 3.41 (3H, s), 2.72 (1H, d, J = 14.0), 2.51 (1H, m), 2.31 (3H, s), 2.43 (1H, d, J = 14.0), 2.08 (1H, d, J = 18.8), 1.38 (3H, s), 1.22 (3H, s), 0.88 (9H, s), 0.12 (3H, s), 0.09 (3H, s). Anal. Calcd for C₂₀H₃₄O₅Si: C, 62.79%; H, 8.96%. Found: C, 63.00%; H, 9.12%.

Amino Alcohol Obtained by Reduction of Cycloadduct 11: endo ¹H NMR (CDCl₃, 360 MHz): δ 4.89 (1H, dd, J = 4.6, 2.0), 4.13 (1H, dd, J = 11.6, 6.6), 3.63 (1H, d, J = 5.6), 3.53 (3H, m), 3.42 (1H, d, J = 9.8), 2.42 (3H, s), 2.35 (3H, s), 2.29 (1H, m), 2.04 (1H, d, J = 18.5), 1.88 (1H, t, J = 13.1), 1.77 (1H, dd, J = 13.1, 6.7), 1.24 (6H, s), 0.93 (9H, s), 0.17 (3H, s), 0.15 (3H, s). ¹³C NMR (CDCl₃): δ 149.6, 97.4, 72.5, 72.0, 69.9, 66.7, 61.9, 46.3, 43.6, 42.6, 41.5, 33.4, 31.2, 25.6 (3C), 23.3, 18.0, -4.3, -4.4. Anal. Calcd for C₂₀H₃₉NO₄Si: C, 62.29%; H, 10.19%; N, 3.63%. Found: C, 62.46%; H, 10.33%; N, 3.60%.

Cycloadduct 12a: endo ¹H NMR (CDCl₃, 360 MHz): δ 4.78 (1H, m), 4.38 (1H, s), 4.18 (2H, q, J = 7.2), 3.33 (3H, s), 2.66 (1H, d, J = 15.9), 2.46 (1H, d, J = 15.9), 2.37 (2H, m), 1.76 (3H, t, J = 1.6), 1.34 (3H, s), 1.33 (3H, s), 1.25 (3H, t, J = 7.2), 0.93 (9H, s), 0.11 (3H, s), 0.10 (3H, s). ¹³C NMR (CDCl₃): δ 205.6, 168.8, 143.2, 110.8, 81.9, 73.6, 68.5, 62.9, 61.6, 60.0, 51.4, 33.9, 30.6, 26.1, 25.7 (3C), 18.2, 15.0, 14.0, -3.7, -3.8. exo ¹H NMR (CDCl₃, 360 MHz): δ 4.83 (1H, dd, J = 6.0, 1.4), 4.49 (1H, s), 4.21 (2H, m), 3.38 (3H, s), 2.64 (1H, m), 2.57 (1H, d, J = 14.2), 2.43 (1H, d, J = 14.2), 2.14 (1H, dd, J = 17.6, 1.4), 1.75 (3H, s), 1.33 (6H, s), 1.25 (3H, t, J = 7.2), 0.93 (9H, s), 0.11 (3H, s), 0.10 (3H, s). ¹³C NMR (CDCl₃): δ 203.3, 168.1, 142.5, 112.7, 80.1, 75.5, 71.1, 67.2, 61.2, 59.9, 49.9, 34.8, 30.9, 25.9, 25.7 (3C), 18.1, 14.1, 12.5, -3.9 (2C). Anal. Calcd for C₂₂H₃₈O₆Si (mixture): C, 61.94%; H, 8.98%. Found: C, 61.89%; H, 9.04%.

Cycloadduct 12b: endo ¹H NMR (CDCl₃): δ 4.42 (1H, d, J = 5.3), 4.05 (1H, s), 3.32 (3H, s), 2.72 (1H, d, J = 15.9), 2.68 (1H, m), 2.52 (1H, d, J = 15.9), 2.43 (1H, dt, J = 18.1, 1.5), 1.75 (3H, s), 1.34 (3H, s), 1.30 (3H, s), 0.95 (9H, s), 0.17 (6H, s). ¹³C NMR (CDCl₃): δ 200.1, 144.3, 117.1, 108.8, 82.7, 74.3, 68.2, 59.8, 52.6, 51.5, 33.6, 30.6, 25.7 (3C), 25.2, 18.2, 14.6, -3.6, -3.8. Anal. Calcd for C₂₀H₃₃O₄NSi: C, 63.23%; H, 8.75%; N, 3.69%. Found: C, 63.26%; H, 8.81%; N, 3.60%.

Cycloadduct 13: <u>endo</u> ¹H NMR (CDCl₃, 360 MHz): δ 5.12 (1H, dd, J = 5.0, 2.0), 4.48 (2H, t, J = 5.2), 4.18 (2H, q, J = 7.2), 3.25 (3H, s), 2.65 (1H, d, J = 16.8), 2.44 (1H, d, J = 16.5), 2.24 (1H, m), 1.31 (6H, s), 1.24 (3H, t, J = 7.2), 1.16 (3H, d, J = 7.3), 0.91 (9H, s), 0.17 (3H, s), 0.10 (3H, s). ¹³C NMR (CDCl₃): δ 205.7, 168.9, 153.2, 100.2, 76.4, 73.1, 71.8, 63.1, 61.5, 57.6, 51.0, 34.9, 30.5, 26.6, 25.6 (3C), 18.1, 14.0, 12.8, -4.1, -5.1. <u>exo</u> ¹H NMR (CDCl₃, 360 MHz): δ 5.04 (1H, m), 4.54 (1H, d, J = 3.6), 4.50 (1H, m), 4.22 (2H, m), 3.32 (3H, s), 2.56 (1H, d, J = 14.9), 2.43 (1H, d, J = 14.9), 2.33 (1H, m), 1.35 (3H, s), 1.31 (3H, s), 1.27 (3H, t, J = 7.0), 1.16 (3H, d, J = 7.6), 0.92 (9H, s), 0.19 (3H, s), 0.17 (3H, s). ¹³C NMR (CDCl₃): δ 203.1, 167.5, 152.8, 101.0, 77.8, 76.3, 75.4, 65.4, 61.0, 57.7, 49.8, 39.8, 30.8, 27.4, 25.6 (3C), 18.0, 17.1, 14.0, -4.3, -4.7. Anal. Calcd for C₂₂H₃₈O₆Si (mixture): C, 61.94%; H, 8.98%. Found: C, 61.88%; H, 8.83%.

Cycloadduct 14: endo ¹H NMR (CDCl₃, 300 MHz): δ 4.52 (1H, dd, J = 5.4, 1.4), 4.32 (1H, s), 4.18 (2H, m), 3.35 (3H, s), 2.56 (2H, m), 2.29 (1H, m), 1.72 (3H, d, J = 2.1), 1.34 (6H, s), 1.26 (3H, t, J = 7.2), 1.17 (3H, d, J = 7.2), 0.95 (9H, s), 0.05 (6H, s). ¹³C NMR (CDCl₃): δ 202.0, 168.0, 147.9, 111.4, 80.0, 78.2, 75.3, 65.9, 61.3, 59.0, 49.9, 40.4, 30.9, 28.7, 25.8 (3C), 18.3, 17.9, 14.4, 14.0, -3.7, -4.1. IR (film): 2934, 2859, 1739, 1708, 1249 cm⁻¹ exo ¹H NMR (CDCl₃, 300 MHz): δ 4.70 (1H, d, J = 4.0), 4.44 (1H, s), 4.24 (2H, m), 3.32 (3H, s), 2.46 (2H, m), 2.32 (1H, m), 1.76 (3H, d, J = 1.3), 1.32 (3H, s), 1.30 (3H, s), 1.28 (3H, t, J = 7.0), 1.22 (3H, d, J = 7.2), 0.95 (9H, s), 0.12 (6H, s). ¹³C NMR (CDCl₃): δ 206.0, 168.8, 145.9, 111.9, 81.9, 73.2, 71.8, 63.0, 61.5, 61.0, 50.7, 35.0, 30.5, 26.7, 25.8 (3C), 18.3, 15.0, 14.1, 13.5, -3.6, -4.5. IR (film): 2934, 2860, 1725, 1682, 1195 cm⁻¹

1-Oxadecalone 16: ¹H NMR (CDCl₃, 360 MHz): ketone **16**: δ 5.18 (1H, m), 4.48 (1H, d, J = 1.8), 4.29 (2H, q, J = 7.2), 4.02 (1H, s), 3.43 (3H, s), 2.95 (1H, dd, J = 15.1, 4.8), 2.70 (1H, dd, J = 15.1, 2.5), 2.54 (2H, m), 1.36-1.24 (9H, m), 1.24 (3H, s). hemiacetal **16a**: δ 4.76 (1H, s), 4.69 (1H, t, J = 5.8), 4.30 (2H, m), 3.78 (1H, s), 3.58 (3H, s), 2.78 (2H, d, J = 5.7), 2.29 (1H, d, J = 14.2), 1.98 (1H, d, J = 14.2), 1.49 (3H, s), 1.37-1.24

(6H, m), 1.24 (3H, s). ¹³C NMR (CDCl₃): ketone **16**: δ 208.7, 201.7, 167.6, 90.5, 78.6, 74.4, 72.6, 64.0, 62.7, 62.6, 50.2, 40.5, 29.8, 26.5, 24.1, 13.9. hemiacetal **16a**: δ 201.3, 169.2, 102.9, 86.2, 85.4, 73.1, 69.4, 61.8, 61.4, 59.8, 42.4, 40.1, 33.4, 27.7, 14.1, 13.2.

1-Oxadecalone 17: ¹H NMR (CDCl₃, 300 MHz): δ 5.09 (1H, m), 4.43 (1H, d, J = 1.8), 4.25 (2H, q, J = 7.1), 3.41 (3H, s), 3.19 (1H, dd, J = 14.9, 5.6), 2.96 (1H, s), 2.62 (1H, dd, J = 14.9, 3.1), 2.58 (1H, d, J = 15.0), 2.49 (1H, d, J = 15.0), 1.47 (3H, s), 1.33 (3H, s), 1.30 (3H, t, J = 7.1), 1.27 (3H, s).